One Versatile Cas9-Integrated Single-Tube Duplex Quantitative Real-Time PCR System for Rapid Analysis of CRISPR/Cas-Induced Mutants

ANALYTICAL CHEMISTRY(2022)

引用 3|浏览13
暂无评分
摘要
Clustered regularly interspersed short palindromic repeat (CRISPR)/Cas9 gene editing has become a common tool for rapid crop and animal breeding, but efficiently screening out and genotyping for the CRISPR/Cas9-induced mutant lines at a low cost remains challenging. Using rice (Oryza sativa L.) samples genetically edited at the Waxy locus as an example, we developed a single-tube duplex quantitative real-time PCR assisted by an in vitro CRISPR/Cas9 cleavage (Cc-qPCR) method to screen for expected genetically edited lines, identify genotypes, and evaluate gene-editing frequency. In Cc-qPCR, genomic DNA is first cleaved at the target site by the single-guide RNA (sgRNA)/Cas9 complex and then quantified with qPCR to assess for the presence of a mutant and identify sample genotypes. Our findings suggest that Cc-qPCR can successfully identify mutants with small insertions or deletions (indels), even in mutant lines with single-base indels or substitutions. Cc-qPCR was also able to successfully identify heterozygous and homozygous mutants. The sensitivity of Cc-qPCR was determined to be as low as 0.5%, indicating that the method could be used to evaluate the editing efficiency of gene-editing systems. After testing our novel method on Waxy locus -edited rice offspring, our results show that Cc-qPCR is an accurate and effective approach to rapidly identify expected mutants and their genotypes and to evaluate editing efficiency. This method will prove useful for increasing the efficiency and range of molecular breeding techniques.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要