Private Convex Optimization in General Norms.

SODA(2023)

引用 0|浏览74
暂无评分
摘要
We propose a new framework for differentially private optimization of convex functions which are Lipschitz in an arbitrary norm $\|\cdot\|$. Our algorithms are based on a regularized exponential mechanism which samples from the density $\propto \exp(-k(F+\mu r))$ where $F$ is the empirical loss and $r$ is a regularizer which is strongly convex with respect to $\|\cdot\|$, generalizing a recent work of [Gopi, Lee, Liu '22] to non-Euclidean settings. We show that this mechanism satisfies Gaussian differential privacy and solves both DP-ERM (empirical risk minimization) and DP-SCO (stochastic convex optimization) by using localization tools from convex geometry. Our framework is the first to apply to private convex optimization in general normed spaces and directly recovers non-private SCO rates achieved by mirror descent as the privacy parameter $\epsilon \to \infty$. As applications, for Lipschitz optimization in $\ell_p$ norms for all $p \in (1, 2)$, we obtain the first optimal privacy-utility tradeoffs; for $p = 1$, we improve tradeoffs obtained by the recent works [Asi, Feldman, Koren, Talwar '21, Bassily, Guzman, Nandi '21] by at least a logarithmic factor. Our $\ell_p$ norm and Schatten-$p$ norm optimization frameworks are complemented with polynomial-time samplers whose query complexity we explicitly bound.
更多
查看译文
关键词
private convex optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要