α-Phase intermediate for efficient and stable narrow bandgap triple cation perovskite solar cells

Journal of Alloys and Compounds(2022)

引用 2|浏览9
暂无评分
摘要
Lead halide perovskite solar cells (PSCs) have attracted intensive attention since their power conversion efficiency (PCE) increased sharply in recent years. Thereinto, triple cation perovskite (TCP) is a popular light absorption layer for PSCs due to its excellent thermal and humidity stability. However, a large amount of MA+ (≥15%) and Br- (≥15%) in TCP makes the bandgap widen drifting from the optimum value. There is some extent of a trade-off between PCE and stability for PSCs, and narrow-bandgap TCP is one of the best choices for light absorption material to achieve an optimum balance between PCE and stability. Herein, we prepared a narrow-bandgap (1.56 eV) high-quality TCP (Cs0.05FA0.86MA0.09Pb(I0.97Br0.03)3) film with an average grain size up to 1208 nm and corresponding PSC with high efficiency of 20.8%. Moreover, the intermediate process of the TCP film crystallization was carefully studied disclosing the critical α-Phase intermediate and corresponding roles of DMSO solvent and MACl additive through quasi-in-situ XRD in the film formation process, and the results may give critical clues to the fabrication of high-quality narrow-bandgap TCP based PSCs.
更多
查看译文
关键词
Narrow bandgap,Intermediate,Dimethyl sulfoxide,Methylamine chloride,Triple cations perovskite solar cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要