Comparing Sensitivities of Geodetic Processing Methods for Rapid Earthquake Magnitude Estimation

SEISMOLOGICAL RESEARCH LETTERS(2022)

引用 5|浏览4
暂无评分
摘要
Rapid earthquake magnitude estimation from real-time space-based geodetic observation streams provides an opportunity to mitigate the impact of large and potentially damaging earthquakes by issuing low-latency warnings prior to any significant and destructive shaking. Geodetic contributions to earthquake characterization and rapid magnitude estimation have evolved in the last 20 yr, from post-processed seismic waveforms to, more recently, improved capacity of regional geodetic networks enabled real-time Global Navigation Satellite System seismology using precise point positioning (PPP) displacement estimates. In addition, empirical scaling laws relating earthquake magnitude to peak ground displacement (PGD) at a given hypocentral distance have proven effective in rapid earthquake magnitude estimation, with an emphasis on performance in earthquakes larger than similar to M-w 6.5 in which near-field seismometers generally saturate. Although the primary geodetic contributions to date in earthquake early warning have focused on the use of 3D position estimates and displacements, concurrent efforts in time-differenced carrier phase (TDCP)-derived velocity estimates also have demonstrated that this methodology has utility, including similarly derived empirical scaling relationships. This study builds upon previous efforts in quantifying the ambient noise of three-component ground-displacement and ground-velocity estimates. We relate these noise thresholds to expected signals based on published scaling laws. Finally, we compare the performance of PPP-derived PGD to TDCP-derived peak ground velocity (PGV), given several rich event datasets. Our results indicate that TDCP-PGV is more likely than PPP-PGD to detect intermediate magnitude (similar to M-w 5.0-6.0) earthquakes, albeit with greater magnitude estimate uncertainty and across smaller epicentral distances. We conclude that the computationally lightweight TDCP-derived PGV magnitude estimation is complementary to PPP-derived PGD magnitude estimates, which could be produced at the network edge at high rates and with increased sensitivity to ground motion than current PPP estimates.
更多
查看译文
关键词
geodetic processing methods,processing methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要