Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory

APPLIED PHYSICS LETTERS(2022)

引用 16|浏览0
暂无评分
摘要
With the development of neuromorphic electronics, much effort has been devoted to the design and manufacture of synaptic electronic devices with large scale and cost-efficient. In this paper, an In2O3 synaptic transistor array gated by screen-printed ion-gel was demonstrated. Due to the ion-gel/Al2O3 stacked gate dielectric, all devices on the array achieved a large hysteresis window of > 1 V, a steep back sweep subthreshold swing of < 60 mV/decade, and a nonvolatile memory behavior, showing that the screen-printed ion-gel has satisfactory uniformity in large scale. In addition, short-term to long-term plasticity, paired-pulse facilitation, and spike-rate-dependent plasticity are simulated. Based on the plasticity regulated with the spike frequency, a high-pass filter was realized. Flash memory as a special memory model in the nervous system has been simulated in the array. This study provides a unique platform for designing high-performance, repeatable, and stable artificial synapses for the neuromorphic system. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络