Heuristic shortest hyperpaths in cell signaling hypergraphs

Algorithms for Molecular Biology(2022)

引用 6|浏览7
暂无评分
摘要
Background Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription factors, are basic to systems biology. Properly modeling the reactions in such pathways requires directed hypergraphs , where an edge is now directed between two sets of vertices. Inferring a pathway by the most parsimonious series of reactions corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. The current state-of-the-art for shortest hyperpaths in cell signaling hypergraphs solves a mixed-integer linear program to find an optimal hyperpath that is restricted to be acyclic, and offers no efficiency guarantees. Results We present, for the first time, a heuristic for general shortest hyperpaths that properly handles cycles , and is guaranteed to be efficient . We show the heuristic finds provably optimal hyperpaths for the class of singleton-tail hypergraphs, and also give a practical algorithm for tractably generating all source-sink hyperpaths. The accuracy of the heuristic is demonstrated through comprehensive experiments on all source-sink instances from the standard NCI-PID and Reactome pathway databases, which show it finds a hyperpath that matches the state-of-the-art mixed-integer linear program on over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist, the heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance, enumerating all source-sink hyperpaths shows the solution found by the heuristic was in fact optimal . Conclusions The new shortest hyperpath heuristic is both fast and accurate . This makes finding source-sink hyperpaths, which in general may contain cycles, now practical for real cell signaling networks. Availability Source code for the hyperpath heuristic in a new tool we call Hhugin (as well as for hyperpath enumeration, and all dataset instances) is available free for non-commercial use at http://hhugin.cs.arizona.edu.
更多
查看译文
关键词
Systems biology, cell signaling networks, reaction pathways, directed hypergraphs, shortest hyperpaths, efficient heuristics, hyperpath enumeration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要