A robust fast bridging algorithm for laser cutting

The International Journal of Advanced Manufacturing Technology(2022)

引用 1|浏览2
暂无评分
摘要
Bridging the different parts together is considered a simple but effective strategy to reduce the number of piercing operations during laser cutting. However, fast bridging is never an easy task. In this paper, we present a near-linear bridging algorithm for the input parts with the shortest total bridge length. At first, the input part contours are discretized into a point cloud, then the point cloud is triangulated with the Delaunay standard. The shortest line segments between any two adjacent parts are found in the triangles connecting the two parts. These segments are finally extended into bridges. To solve the problem of the damages to the contour characteristics caused by the bridges, some restrictions are set on the screening of the discrete point cloud and the Delaunay triangles. This algorithm not only ensures the minimum total distance of all bridges, but also avoids the problem of generating bridge loops. Computational experiments show that the proposed bridging algorithm is much faster than that in existing commercial software. The feasibility and superiority of the algorithm are verified by actual lasering cutting experiments.
更多
查看译文
关键词
Laser cutting,Bridging,Piercing reduction,Delaunay triangulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要