Degradation of Organics and Change Concentration in Per-Fluorinated Compounds (PFCs) during Ozonation and UV/H2O2 Advanced Treatment of Tertiary-Treated Sewage

Jesmin Akter,Jai-yeop Lee, Hyun-Ju Ha, In Geol Yi, Da-Hye Hong,Chang-Min Park,Mok-Young Lee,Ilho Kim

SUSTAINABILITY(2022)

引用 1|浏览0
暂无评分
摘要
This study aimed to investigate the effect of H2O2 addition, ozone feed rate, and UV addition on the change in the concentration of organics such as CODMn, CODCr, TOC, and PFCs in tertiary-treated effluent from a sewage treatment plant (STP) during the O-3 and UV/H2O2 process. The degradation of organic pollutants from tertiary effluent is a significant challenge because biological treatment cannot degrade these recalcitrant pollutants. Therefore, the O-3/UV/H2O2 process was an effective method for treating recalcitrant organics. Several batch tests were conducted to investigate the direct UV photolysis, UV/H2O2, and ozone-based advanced oxidation process to degrade CODMn, CODCr, TOC, and PFCs. The chemical oxygen demand (COD) and total organic carbon (TOC) with UV irradiation showed 95% and 50% removal efficiency percentages under optimal conditions (initial pH = 6.7, H2O2 dosage = 50 mg/L, ozone feed rate = 5.8 mg/L/min. Moreover, UV irradiation, with the addition of H2O2, and a sufficient dose of ozone, demonstrated the efficient removal of organic compounds by the indication of radical oxidation. (center dot OH) is the dominant mechanism. However, AOPs are not sufficient to fully treat the PFC compound; thus, additional procedures are required to degrade PFCs. In this study, the removal of organic recalcitrant contaminants and the change in added PFC concentration in tertiary-treated sewage were investigated by applying the ozone-based advanced oxidation process.
更多
查看译文
关键词
organic compound, PFCs, tertiary wastewater, O-3, UV, H2O2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要