Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI)

Claudia Post,Niklas Heyden, André Reinartz,Aaron Foerderer, Simon Bruelisauer,Volker Linnemann,William Hug,Florian Amann

SENSORS(2022)

引用 1|浏览3
暂无评分
摘要
The entire water cycle is contaminated with largely undetected micropollutants, thus jeopardizing wastewater treatment. Currently, monitoring methods that are used by wastewater treatment plants (WWTP) are not able to detect these micropollutants, causing negative effects on aquatic ecosystems and human health. In our case study, we took collective samples around different treatment stages (aeration tank, membrane bioreactor, ozonation) of a WWTP and analyzed them via Deep-UV laser-induced Raman and fluorescence spectroscopy (LIRFS) in combination with a CNN-based AI support. This process allowed us to perform the spectra recognition of selected micropollutants and thus analyze their reliability. The results indicated that the combination of sensitive fluorescence measurements with very specific Raman measurements, supplemented with an artificial intelligence, lead to a high information gain for utilizing it as a monitoring purpose. Laser-induced Raman spectroscopy reaches detections limits of alert pharmaceuticals (carbamazepine, naproxen, tryptophan) in the range of a few mu g/L; naproxen is detectable down to 1 x 10(-4) mg/g. Furthermore, the monitoring of nitrate after biological treatment using Raman measurements and AI support showed a reliable assignment rate of over 95%. Applying the fluorescence technique seems to be a promising method in observing DOC changes in wastewater, leading to a correlation coefficient of R-2 = 0.74 for all samples throughout the purification processes. The results also showed the influence of different extraction points in a cleaning stage; therefore, it would not be sensible to investigate them separately. Nevertheless, the interpretation suffers when many substances interact with one another and influence their optical behavior. In conclusion, the results that are presented in our paper elucidate the use of LIRFS in combination with AI support for online monitoring.
更多
查看译文
关键词
environmental monitoring, micropollutants, data processing, real-time monitoring, wastewater treatment plant, DUV Raman, fluorescence spectroscopy, artificial intelligence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要