Relationship Between Replay-Associated Ripples and Hippocampal N-Methyl-D-Aspartate Receptors: Preliminary Evidence From a PET-MEG Study in Schizophrenia.

Schizophrenia Bulletin Open(2022)

引用 3|浏览2
暂无评分
摘要
Background and Hypotheses:Hippocampal replay and associated high-frequency ripple oscillations are among the best-characterized phenomena in resting brain activity. Replay/ripples support memory consolidation and relational inference, and are regulated by N-methyl-D-aspartate receptors (NMDARs). Schizophrenia has been associated with both replay/ripple abnormalities and NMDAR hypofunction in both clinical samples and genetic mouse models, although the relationship between these 2 facets of hippocampal function has not been tested in humans. Study Design:Here, we avail of a unique multimodal human neuroimaging data set to investigate the relationship between the availability of (intrachannel) NMDAR binding sites in hippocampus, and replay-associated ripple power, in 16 participants (7 nonclinical participants and 9 people with a diagnosis of schizophrenia, PScz). Each participant had both a [18F]GE-179 positron emission tomography (PET) scan (to measure NMDAR availability, V T ) and a magnetoencephalography (MEG) scan (to measure offline neural replay and associated high-frequency ripple oscillations, using Temporally Delayed Linear Modeling). Study Results:We show a positive relationship between hippocampal NMDAR availability and replay-associated ripple power. This linkage was evident across control participants (r(5) = .94, P = .002) and PScz (r(7) = .70, P = .04), with no group difference. Conclusions:Our findings provide preliminary evidence for a relationship between hippocampal NMDAR availability and replay-associated ripple power in humans, and haverelevance for NMDAR hypofunction theories of schizophrenia.
更多
查看译文
关键词
Psychosis,excitation-inhibition balance,inference,replay,sharp wave ripple
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要