The effects of intermolecular interactions on the stability and in vitro drug release of daunorubicin/cytarabine co-loaded liposome

Colloids and Surfaces B: Biointerfaces(2022)

引用 3|浏览5
暂无评分
摘要
Various studies were performed on the intermolecular interactions of daunorubicin (DNR) and cytarabine (Ara-C) co-loaded liposome to predict and elucidate its stability and in vitro drug release behavior. Langmuir monolayer and spectroscopy studies showed interactions between its components. The Langmuir monolayer study and blank liposomes stability study illustrated that interactions between lipids could affect their stability, and the DSPC/DSPG/Chol (7/2/1, mol%) mixed system tended to be thermodynamically and physicochemically stable. The interactions between daunorubicin and copper ions were then investigated by ultraviolet-visible (UV–vis) electronic absorption spectroscopy and circular dichroism (CD) spectroscopy, which revealed that the DNR-Cu complex was composed of daunorubicin and copper ions at a molar ratio of 1:1 or 1:2, and its solubility was related to the acidity of the solution. In vitro release experiment of liposomes with different copper gluconate contents illustrated that the interactions between drugs and copper ions were conducive to the retention and synergetic release of drugs. The stability and release studies of the DSPC/DSPG/Chol (7/2/1, mol%) co-loaded liposome illustrated that it had good storage and plasma stability, and the release behaviors of drugs were pH-related, i.e., drugs could be released faster under acidic condition. These studies indicated that intermolecular interactions could affect the stability and release behavior of the liposome, and a certain ratio of components could be conducive to its stability and synergistic release of drugs.
更多
查看译文
关键词
Intermolecular interactions,The Langmuir monolayer study,Spectroscopy study,Stability,Release behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要