ADeLA: Automatic Dense Labeling with Attention for Viewpoint Shift in Semantic Segmentation

IEEE Conference on Computer Vision and Pattern Recognition(2022)

引用 3|浏览93
暂无评分
摘要
We describe a method to deal with performance drop in semantic segmentation caused by viewpoint changes within multi-camera systems, where temporally paired images are readily available, but the annotations may only be abundant for a few typical views. Existing methods alleviate performance drop via domain alignment in a shared space and assume that the mapping from the aligned space to the output is transferable. However, the novel content induced by viewpoint changes may nullify such a space for effective alignments, thus resulting in negative adaptation. Our method works without aligning any statistics of the images between the two domains. Instead, it utilizes a novel attention-based view transformation network trained only on color images to hallucinate the semantic images for the target. Despite the lack of supervision, the view transformation network can still generalize to semantic images thanks to the induced “information transport” bias. Furthermore, to resolve ambiguities in converting the semantic images to semantic labels, we treat the view transformation network as a functional representation of an unknown mapping implied by the color images and propose functional label hallucination to generate pseudo-labels with uncertainties in the target domains. Our method surpasses baselines built on state-of-the-art correspondence estimation and view synthesis methods. Moreover, it outperforms the state-of-the-art unsupervised domain adaptation methods that utilize self-training and adversarial domain alignments. Our code and dataset will be made publicly available.
更多
查看译文
关键词
Transfer/low-shot/long-tail learning, Datasets and evaluation, Image and video synthesis and generation, Machine learning, Robot vision, Scene analysis and understanding, Segmentation,grouping and shape analysis, Vision applications and systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要