Reduction of excitatory synaptic transmission efficacy in the infralimbic prefrontal cortex potentially contributes to impairment of contextual fear memory extinction in aged mice.

The journals of gerontology. Series A, Biological sciences and medical sciences(2022)

引用 2|浏览3
暂无评分
摘要
Human beings are living longer than ever before and cognitive decline experienced by aged adults, such as compromise in cognitive flexibility, has been attracting more and more attention. One such example is the aging-related impairment of memory extinction. However, its underlying neural basis, especially the functional basis at the synapse level, is largely unknown. This study verifies that Pavlovian contextual fear memory extinction is impaired in aged mice. A large body of previous studies have shown that the infralimbic prefrontal cortex (ilPFC) plays a pivotal role in memory extinction. Correspondingly, this study reveals an aging-related reduction in the efficacy of excitatory synaptic transmission onto the ilPFC pyramidal neurons via electrophysiology recordings. This study further suggests that this reduced excitation potentially contributes to the aging-related impairment of contextual fear memory extinction: chemogenetically suppressing the activity of the ilPFC pyramidal neurons in young mice impairs contextual fear memory extinction, whereas chemogenetically compensating the reduced excitation of the ilPFC pyramidal neurons in aged mice restores contextual fear memory extinction. This study identifies a functional synaptic plasticity in the ilPFC pyramidal neurons that potentially contributes to the aging-related impairment of contextual fear memory extinction, which would potentially help to develop a therapy to treat related cognitive decline in aged human adults.
更多
查看译文
关键词
aging-related cognitive decline,contextual fear memory,infralimbic prefrontal cortex,memory extinction,synaptic plasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要