LinearAlifold: Linear-Time Consensus Structure Prediction for RNA Alignments.

Apoorv Malik, Liang Zhang, Milan Gautam, Ning Dai,Sizhen Li, He Zhang,David H Mathews,Liang Huang

ArXiv(2024)

Cited 0|Views19
No score
Abstract
Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (~30,000nt). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 hours on the above 400 genomes, or ~36$\times$ speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold's prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at: https://github.com/LinearFold/LinearAlifold (code) and http://linearfold.org/linear-alifold (server).
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined