Using compositionality to understand parts in whole objects

EUROPEAN JOURNAL OF NEUROSCIENCE(2022)

引用 3|浏览24
暂无评分
摘要
A fundamental question for any visual system is whether its image representation can be understood in terms of its components. Decomposing any image into components is challenging because there are many possible decompositions with no common dictionary, and enumerating the components leads to a combinatorial explosion. Even in perception, many objects are readily seen as containing parts, but there are many exceptions. These exceptions include objects that are not perceived as containing parts, properties like symmetry that cannot be localized to any single part and special categories like words and faces whose perception is widely believed to be holistic. Here, I describe a novel approach we have used to address these issues and evaluate compositionality at the behavioural and neural levels. The key design principle is to create a large number of objects by combining a small number of pre-defined components in all possible ways. This allows for building component-based models that explain neural and behavioural responses to whole objects using a combination of these components. Importantly, any systematic error in model fits can be used to detect the presence of emergent or holistic properties. Using this approach, we have found that whole object representations are surprisingly predictable from their components, that some components are preferred to others in perception and that emergent properties can be discovered or explained using compositional models. Thus, compositionality is a powerful approach for understanding how whole objects relate to their parts.
更多
查看译文
关键词
holistic processing, object recognition, object vision, visual perception
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要