Exploring bacterial communities through metagenomics during bioremediation of polycyclic aromatic hydrocarbons from contaminated sediments.

The Science of the total environment(2022)

引用 8|浏览6
暂无评分
摘要
The goal of this study was to evaluate the degradation effectiveness of PAHs degrading bacteria at the mesocosm level, including Stenotrophomonas maltophilia (SC), mixed culture (MC), and enriched native microflora (EC) at the mesocosm level. Maximum degradation was found in the mesocosm MC (26.67 %), followed by SC (25.08 %) and EC (18.25 %) after 60 days. Thus, mixed culture and Stenotrophomonas maltophilia could be a game changer in the PAHs bioremediation at the chronically contaminated sites. MiSeq sequencing has revealed dominancy of γ-Proteobacteria, α-Proteobacteria, β-Proteobacteria at class level and Sphingomonadales, oceanospirillales, Rhodothermales at Order level. Families Alcanivoracaceae, Alteromonadaceae, Nocardiaceae, Rhodospirillaceae and genus Stenotrophomonas, Alcanivorax, Methylophaga, Fluviicola and Rhodoplanes were considerably increased which play key role in the PAHs degradation. Dominant bacterial communities have revealed resilience community to enable potential PAHs degradation process in all the mesocosms. To the best our knowledge this is the first ever attempt in PAHs biodegradation study conducted at the mesocosm level mimicking natural environmental conditions. Consequently, this study could be a benchmark against which future progress studies for the policy makers and stakeholders to design appropriate bioremediation study for the historically PAHs polluted contaminate sites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要