Impact of Polymerization Technique and ZrO2 Nanoparticle Addition on the Fracture Load of Interim Implant-Supported Fixed Cantilevered Prostheses in Comparison to CAD/CAM Material

DENTISTRY JOURNAL(2022)

引用 3|浏览8
暂无评分
摘要
ZrO2 nanoparticles (ZNPs) have excellent physical properties. This study investigated the fracture load of implant-supported, fixed cantilevered prosthesis materials, reinforced with ZNPs and various polymerization techniques, compared with conventional and CAD/CAM materials. Sixty specimens were made from two CAD/CAM; milled (MIL) (Ceramill TEMP); and 3D-printed (NextDent Denture 3D+). Conventional heat-polymerized acrylic resin was used to fabricate the other specimens, which were grouped according to their polymerization technique: conventionally (HP) and autoclave-polymerized (AP); conventionally cured and reinforced with 5 wt% ZNPs (HPZNP); and autoclave reinforced with 5 wt% ZNPs (APZNP). The specimens were thermocycled (5000 cycles/30 s dwell time). Each specimen was subjected to static vertical loading (1 mm/min) using a universal Instron testing machine until fracture. Scanning electron microscopy was used for fracture surface analyses. The ANOVA showed significant fracture load differences between all the tested groups (p = 0.001). The Tukey post hoc tests indicated a significant difference in fracture load between all tested groups (p < 0.001) except HP vs. HPZNP and AP vs. MIL. APZNP had the lowest mean fracture load value (380.7 +/- 52.8 N), while MIL had the highest (926.6 +/- 82.8 N). The CAD/CAM materials exhibited the highest fracture load values, indicating that they could be used in long-term interim prostheses. Autoclave polymerization improved fracture load performance, whereas ZrO2 nanoparticles decreased the fracture load performance of cantilevered prostheses.
更多
查看译文
关键词
ZrO2 nanoparticles, fracture load, cantilever, PMMA, polymerization technique
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要