Sugar transporter TaSTP3 activation by TaWRKY19/61/82 enhances stripe rust susceptibility in wheat

NEW PHYTOLOGIST(2022)

引用 5|浏览10
暂无评分
摘要
Sugar efflux from host plants is essential for pathogen survival and proliferation. Sugar transporter-mediated redistribution of host sugar contributes to the outcomes of plant-pathogen interactions. However, few studies have focused on how sugar translocation is strategically manipulated during host colonization. To elucidate this question, the wheat sugar transport protein (STP) TaSTP3 responding to Puccinia striiformis f. sp. tritici (Pst) infection was characterized for sugar transport properties in Saccharomyces cerevisiae and its potential role during Pst infection by RNA interference and overexpression in wheat. In addition, the transcription factors regulating TaSTP3 expression were further determined. The results showed that TaSTP3 is localized to the plasma membrane and functions as a sugar transporter of hexose and sucrose. TaSTP3 confers enhanced wheat susceptibility to Pst, and overexpression of TaSTP3 resulted in increased sucrose accumulation and transcriptional suppression of defense-related genes. Furthermore, TaWRKY19, TaWRKY61 and TaWRKY82 were identified as positive transcriptional regulators of TaSTP3 expression. Our findings reveal that the Pst-induced sugar transporter TaSTP3 is transcriptionally activated by TaWRKY19/61/82 and facilitates wheat susceptibility to stripe rust possibly through elevated sucrose concentration, and suggest TaSTP3 as a strong target for engineering wheat resistance to stripe rust.
更多
查看译文
关键词
stripe rust fungi, sucrose, sugar transporter protein, susceptibility, transcriptional regulation, wheat (Triticum aestivum)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要