Design on Modified-Zinc Anode with Dendrite- and Side Reactions-Free by Hydrophobic Organic-Inorganic Hybrids for Ultra-Stable Zinc Ion Batteries

Social Science Research Network(2022)

引用 24|浏览10
暂无评分
摘要
Zinc has been widely deployed as an anode of zinc ion batteries (ZIBs) due to high safety, high theoretical capacity, and low potential. However, dendrite growth and side reactions still severely hampered scale-up implementation in ZIBs. Here, organic hydrophobic polyvinylidene fluoride and inorganic Santa Barbara Amorphous-15 (PVDF-SBA15) hybrids were designed as a surface modification layer to stabilize Zn anode, leading to an optimized Zn/electrolyte interface with large-scale feasibility. The PVDF-SBA15 surface modification realizes synergistic protection on zinc anode since the hydrophobic PVDF could avoid the side reactions through prevention of direct contact between the zinc and the electrolyte, while the evenly distributed porous structure of SBA15 can induce uniform zinc plating/stripping and inhibit dendrite growth by uniform zinc ions flux. The hydrophobic PVDF-SBA15 surface-modified Zn anode (PVDF-SBA15 @Zn) exhibits dendrite-free Zn plating/stripping with low overpotential after 1650 h at a current density of 3 mA cm−2 in symmetrical batteries. The PVDF-SBA15 @Zn||V2O5 full batteries enable the stable cycling of 82.14 % capacity retention after 1000 cycles compared with 23.55 % of Zn||V2O5. The effectively inhibited dendrite growth and side reactions on Zn anode through hydrophobic organic-inorganic surface modification layer provide solid foundation for the realization of ultra-stable zinc ion batteries.
更多
查看译文
关键词
Hydrophobic surface modification,PVDF-SBA15,Evenly distributed porous structure,Zinc anode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要