OUP accepted manuscript

Systematic Biology(2022)

引用 0|浏览0
暂无评分
摘要
Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without pre-specified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multi-locus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data.
更多
查看译文
关键词
species trees,deep learning enables,deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要