On approximating the rank of graph divisors

arxiv(2022)

引用 0|浏览1
暂无评分
摘要
Baker and Norine initiated the study of graph divisors as a graph-theoretic analogue of the Riemann-Roch theory for Riemann surfaces. One of the key concepts of graph divisor theory is the {\it rank} of a divisor on a graph. The importance of the rank is well illustrated by Baker's {\it Specialization lemma}, stating that the dimension of a linear system can only go up under specialization from curves to graphs, leading to a fruitful interaction between divisors on graphs and curves. Due to its decisive role, determining the rank is a central problem in graph divisor theory. Kiss and T\'othm\'eresz reformulated the problem using chip-firing games, and showed that computing the rank of a divisor on a graph is NP-hard via reduction from the Minimum Feedback Arc Set problem. In this paper, we strengthen their result by establishing a connection between chip-firing games and the Minimum Target Set Selection problem. As a corollary, we show that the rank is difficult to approximate to within a factor of $O(2^{\log^{1-\varepsilon}n})$ for any $\varepsilon > 0$ unless $P=NP$. Furthermore, assuming the Planted Dense Subgraph Conjecture, the rank is difficult to approximate to within a factor of $O(n^{1/4-\varepsilon})$ for any $\varepsilon>0$.
更多
查看译文
关键词
Approximation,Chip-firing,Graph divisors,Minimum target set selection,Riemann-Roch theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要