G4Boost: a machine learning-based tool for quadruplex identification and stability prediction

BMC Bioinformatics(2022)

引用 5|浏览13
暂无评分
摘要
Background G-quadruplexes (G4s), formed within guanine-rich nucleic acids, are secondary structures involved in important biological processes. Although every G4 motif has the potential to form a stable G4 structure, not every G4 motif would, and accurate energy-based methods are needed to assess their structural stability. Here, we present a decision tree-based prediction tool, G4Boost, to identify G4 motifs and predict their secondary structure folding probability and thermodynamic stability based on their sequences, nucleotide compositions, and estimated structural topologies. Results G4Boost predicted the quadruplex folding state with an accuracy greater then 93% and an F1-score of 0.96, and the folding energy with an RMSE of 4.28 and R 2 of 0.95 only by the means of sequence intrinsic feature. G4Boost was successfully applied and validated to predict the stability of experimentally-determined G4 structures, including for plants and humans. Conclusion G4Boost outperformed the three machine-learning based prediction tools, DeepG4, Quadron, and G4RNA Screener, in terms of both accuracy and F1-score, and can be highly useful for G4 prediction to understand gene regulation across species including plants and humans.
更多
查看译文
关键词
G-quadruplex, Machine learning, Topology, Stability, Energy, Plants, Humans
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要