Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism

International Journal of Biological Macromolecules(2022)

引用 28|浏览12
暂无评分
摘要
Exploiting eco-friendly, highly controlled preparation and convenient solid-liquid separation adsorbent to separate uranium from aquatic medium is of importance and in demand. In this study, magnetic ferroferric oxide nanoparticles synthesized through a facile hydrothermal reaction was cross-linked with chitosan. The intermediate product was subsequently chemically grafting with four amino acids such as alanine, serine, glycine or L-cysteine to produce Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS. The resultants were verified by SEM, EDS, XRD, VSM, FT-IR and XPS. Adsorption of uranium with amino acids-modified magnetic chitosans were carried out. The parameters that affected the adsorption ability, selectivity toward uranium, and reusability have been illustrated. pH 6.5 was the most beneficial for the adsorption. The saturation adsorption capacity of Ala-MCS, Ser-MCS, Gly-MCS, Cys-MCS were found as 658.88 mg/g ± 1.0 %, 616.10 ± 0.3 % mg/g, 646.38 ± 1.8 % mg/g, 653.96 ± 3.4 % mg/g and 409.15 ± 4.6 % mg/g, respectively. The adsorption process was analyzed using kinetics (pseudo-first-order, pseudo-second-order and intraparticle diffusion models) and isotherms models (Langmuir and Freundlich models). The adsorption of uranium on Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS happened on monolayer and were controlled by chemisorption. The certified high adsorption amount and efficient solid-liquid separation proved amino acids-modified magnetic chitosan are promising adsorbents for removal of uranium from wastewater.
更多
查看译文
关键词
Magnetic chitosan particles,Amino acids,Uranium,Adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要