Experimental testing of 3D printed polymeric heat exchangers

IOP Conference Series: Materials Science and Engineering(2021)

引用 3|浏览0
暂无评分
摘要
Abstract Unlike conventional manufacturing technologies, additive manufacturing and 3D printing empower engineers with much more design freedom. Heat exchangers with complex internal channels or lattice structures can be designed for layerwise manufacturing by maximizing the surface to volume ratio. Low-weight polymeric heat exchangers are employed in aviation and aerospace applications. For increasing the thermal performance of polymers, additives can be used such as graphene. In this study, a Grafylon filament is used for the production of a simple heat exchanger by 3D printing. The heat exchanger is composed of two external shells and an interior duct with a two-stage 45-degree bend. For watertight purposes, the duct is manufactured by selective laser sintering of polyamide powder. Two replicas of the shells are fabricated by 3D printing of Grafylon and acrylonitrile butadiene styrene (ABS) respectively. The thermal performance of the two materials is experimentally tested and compared also to numerical simulations. The results of the study show that the Grafylon filament provides enhanced thermal performance to 3D printed heat exchangers of polymeric material.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要