Efficient Per-Shot Convex Hull Prediction By Recurrent Learning


Cited 0|Views1
No score
Adaptive video streaming relies on the construction of efficient bitrate ladders to deliver the best possible visual quality to viewers under bandwidth constraints. The traditional method of content dependent bitrate ladder selection requires a video shot to be pre-encoded with multiple encoding parameters to find the optimal operating points given by the convex hull of the resulting rate-quality curves. However, this pre-encoding step is equivalent to an exhaustive search process over the space of possible encoding parameters, which causes significant overhead in terms of both computation and time expenditure. To reduce this overhead, we propose a deep learning based method of content aware convex hull prediction. We employ a recurrent convolutional network (RCN) to implicitly analyze the spatiotemporal complexity of video shots in order to predict their convex hulls. A two-step transfer learning scheme is adopted to train our proposed RCN-Hull model, which ensures sufficient content diversity to analyze scene complexity, while also making it possible capture the scene statistics of pristine source videos. Our experimental results reveal that our proposed model yields better approximations of the optimal convex hulls, and offers competitive time savings as compared to existing approaches. On average, the pre-encoding time was reduced by 58.0% by our method, while the average Bjontegaard delta bitrate (BD-rate) of the predicted convex hulls against ground truth was 0.08%, while the mean absolute deviation of the BD-rate distribution was 0.44%
Translated text
Key words
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined