Controlling the Cation Exsolution of Perovskite to Customize Heterostructure Active Site for Oxygen Evolution Reaction

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 24|浏览20
暂无评分
摘要
Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts offering an ordered atomic arrangement and a highly flexible electronic structure. Currently, understanding and adjusting the dynamic reconstruction of perovskite during the OER process remains a formidable challenge. Here, we report the artificial construction of a heterostructure by the cation exsolution of perovskite to control the active site formation and reconstruction. The deliberately made La deficiency in LaNiO3 perovskite facilitates the original segregation of NiO from the parent matrix and forms a well-defined interface between perovskite parent and NiO exsolution phase. The dynamic formation process of such heterojunction was studied by density functional theory computation and high quality imaging characterization. Due to the valence redistribution of Ni ions caused by the interfacial electron transfer, the in situ formed LaNiO3/NiO heterostructure displays high electroactivity. Therefore, the LaNiO3/NiO heterostructure exhibits a dynamic surface evolution feature with the generation of the highly active NiOOH layer under a low anodic potential (similar to 1.35 V vs RHE) during the OER process, which is very different from the conventional LaNiO3 with a stoichiometry and NiO catalysts. With the newly formed heterostructure, the reconstructed catalysts impart a 4.5-fold increase in OER activity and a 3-fold improvement in stability against La and Ni dissolution during the OER process. This work provides a feasible interface engineering strategy for artificially controlling the reconstruction of the active phase in high-performance perovskite-based electrocatalytic materials.
更多
查看译文
关键词
cation exsolution, perovskite oxide, heterostructure, oxygen evolution reaction, electrocatalysts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要