Viruses inhibit TIR gcADPR signaling to overcome bacterial defense

biorxiv(2022)

引用 9|浏览2
暂无评分
摘要
The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants, and animals. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signaling molecule whose molecular structure remained elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function. We identified a large family of phage-encoded proteins, denoted here Thoeris anti-defense 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are “sponges” that bind and sequester the immune signaling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. A high-resolution crystal structure of Tad1 bound to the signaling molecule revealed that its chemical structure is 1′–2′ glycocyclic ADPR (gcADPR), a unique molecule not previously described in other biological systems. Our results define the chemical structure of a central immune signaling molecule, and reveal a new mode of action by which pathogens can suppress host immunity. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要