Investigation of a Dual siRNA/Chemotherapy Delivery System for Breast Cancer Therapy

ACS OMEGA(2022)

引用 3|浏览8
暂无评分
摘要
Multidrug resistance (MDR) is a problem that is often associated with a poor clinical outcome in chemotherapeutic cancer treatment. MDR may potentially be overcome by utilizing synergistic approaches, such as combining siRNA gene therapy and chemotherapy to target different mechanisms of apoptosis. In this study, a strategy is presented for developing multicomponent nanomedicines using orthogonal and compatible chemistries that lead to effective nanotherapeutics. Hyperbranched polymers were used as drug carriers that contained doxorubicin (DOX), attached via a pH-sensitive hydrazone linkage, and ataxia-telangiectasia mutated (ATM) siRNA, attached via a redox-sensitive disulfide group. This nanomedicine also contained cyanine 5 (Cy5) as a diagnostic tracer as well as in-house developed bispecific antibodies that allowed targeting of the epidermal growth factor receptor (EGFR) present on tumor tissue. Highly efficient coupling of siRNA was achieved with 80% of thiol end-groups on the hyperbranched polymer coupling with siRNA. This attachment was reversible, with the majority of siRNA released in vitro under reducing conditions as desired. In cellular studies, the nanomedicine exhibited increased DNA damage and cancer cell inhibition compared to the individual treatments. Moreover, the nanomedicine has great potential to suppress the metabolism of cancer cells including both mitochondrial respiration and glycolytic activity, with enhanced efficacy observed when targeted to the cell surface protein EGFR. Our findings indicated that co-delivery of ATM siRNA and DOX serves as a more efficient therapeutic avenue in cancer treatment than delivery of the single species and offers a potential route for synergistically enhanced gene therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要