Label-Free Quantitative Proteomics Unravel the Impacts of Salt Stress on Dendrobium huoshanense

FRONTIERS IN PLANT SCIENCE(2022)

引用 4|浏览10
暂无评分
摘要
Salt stress is a constraint on crop growth and productivity. When exposed to high salt stress, metabolic abnormalities that disrupt reactive oxygen species (ROS) homeostasis result in massive oxygen radical deposition. Dendrobium huoshanense is a perennial orchid herb that thrives in semi-shade conditions. Although lots of studies have been undertaken on abiotic stresses (high temperature, chilling, drought, etc.) of model plants, few studies were reported on the mechanism of salt stress in D. huoshanense. Using a label-free protein quantification method, a total of 2,002 differential expressed proteins were identified in D. huoshanense. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that proteins involved in vitamin B6 metabolism, photosynthesis, spliceosome, arginine biosynthesis, oxidative phosphorylation, and MAPK signaling were considerably enriched. Remarkably, six malate dehydrogenases (MDHs) were identified from deferentially expressed proteins. (NAD+)-dependent MDH may directly participate in the biosynthesis of malate in the nocturnal crassulacean acid metabolism (CAM) pathway. Additionally, peroxidases such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as antioxidant enzymes involved in glutathione biosynthesis and some vitamins biosynthesis were also identified. Taken together, these results provide a solid foundation for the investigation of the mechanism of salt stress in Dendrobium spp.
更多
查看译文
关键词
salt stress, reactive oxygen species, carbon dioxide fixation, label-free quantitative proteomics, Dendrobium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要