Efficient separation between trivalent americium and lanthanides enabled by a phenanthroline-based polymeric organic framework

Chinese Chemical Letters(2022)

引用 18|浏览2
暂无评分
摘要
Separation of the minor actinides (Am and Cm) from lanthanides in high-level liquid wastes (HLLW) is one of the most challenging chemical separation tasks known owing to their chemical similarities and is highly significant in nuclear fuel reprocessing plants because it could practically lead to sustainable nuclear energy by closing the nuclear fuel cycle. The solid phase extraction is proposed to be a possible strategy but all reported sorbent materials severely suffer from limited stability and/or efficiency caused by the harsh conditions of high acidity coupled with intense irradiation. Herein, a phenanthroline-based polymeric organic framework (PhenTAPB-POF) was designed and tested for the separation of trivalent americium from lanthanides for the first time. Due to its fully conjugated structure, PhenTAPB-POF exhibits previously unachieved stability under the combined extreme conditions of strong acids and high irradiation field. The americium partitioning experiment indicates that PhenTAPB-POF possesses an ultrahigh adsorption selectivity towards Am(III) over lanthanides (e.g., SFAm(III)/Eu(III) = 3326) in highly acidic simulated HLLW and relatively fast adsorption kinetics in both static and dynamic experiments. Am(III) can be almost quantitatively eluted from the PhenTAPB-POF packed-column using a concentrated nitric acid elution. The high stability and superior separation performance endow PhenTAPB-POF with the promising alternative for separating minor actinides over lanthanides from highly acidic HLLW streams.
更多
查看译文
关键词
Porous organic framework,Americium,Lanthanides,Separation,Stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要