Climate projections at a convection-permitting scale of extreme temperature indices for an archipelago with a complex microclimate structure

Weather and Climate Extremes(2022)

引用 4|浏览1
暂无评分
摘要
In island systems with complex orography (e.g. Canary Islands), obtaining projections of climate extremes throughout the 21st century is necessary to evaluate the possible adverse effects of climate change. In this work, a dynamic downscaling methodology was applied to obtain the projections of temperature extremes indices. The WRF modeling system was properly configured with a spatial resolution of 3 km, for the periods: 2030–2059 (MID) and 2070–2099 (END), and for the RCPs 4.5 and 8.5 scenarios. This spatial-temporal resolution allows better modeling of the land-surface coupling processes (e.g., latent and sensible heat fluxes), which are one of the main sources of uncertainties in temperature extremes modeling. The initial and boundary conditions were defined by three CMIP5 Earth Systems Models: GFDL-ESM2M, MIROC-ESM, and IPSL-CM5. The future changes were calculated against the modeled reference period was 1980–2009 (HIS). The selected extremes indices were those defined by the Team of Experts on Climate Change Detection and Indices (ETCCDI) and were: monthly absolute maximum and minimum temperature respectively (TX and TN), monthly maximum of the diurnal temperature range (DTR), tropical nights (TR), warm days (TX90P), cold nights (TN10P), warm-spell duration index (WSDI) and cold-spell duration index (CSDI). Also, the return levels and return periods for annual maximum temperature were analyzed using the Generalized Extreme Value distribution (GEV).
更多
查看译文
关键词
Extreme temperatures,Archipelago,Future projections,Complex orography,WRF,Return temperatures
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要