Sensitivity analysis and inverse uncertainty quantification for the left ventricular passive mechanics

Biomechanics and Modeling in Mechanobiology(2022)

引用 10|浏览10
暂无评分
摘要
Personalized computational cardiac models are considered to be a unique and powerful tool in modern cardiology, integrating the knowledge of physiology, pathology and fundamental laws of mechanics in one framework. They have the potential to improve risk prediction in cardiac patients and assist in the development of new treatments. However, in order to use these models for clinical decision support, it is important that both the impact of model parameter perturbations on the predicted quantities of interest as well as the uncertainty of parameter estimation are properly quantified, where the first task is a priori in nature (meaning independent of any specific clinical data), while the second task is carried out a posteriori (meaning after specific clinical data have been obtained). The present study addresses these challenges for a widely used constitutive law of passive myocardium (the Holzapfel-Ogden model), using global sensitivity analysis (SA) to address the first challenge, and inverse-uncertainty quantification (I-UQ) for the second challenge. The SA is carried out on a range of different input parameters to a left ventricle (LV) model, making use of computationally efficient Gaussian process (GP) surrogate models in place of the numerical forward simulator. The results of the SA are then used to inform a low-order reparametrization of the constitutive law for passive myocardium under consideration. The quality of this parameterization in the context of an inverse problem having observed noisy experimental data is then quantified with an I-UQ study, which again makes use of GP surrogate models. The I-UQ is carried out in a Bayesian manner using Markov Chain Monte Carlo, which allows for full uncertainty quantification of the material parameter estimates. Our study reveals insights into the relation between SA and I-UQ, elucidates the dependence of parameter sensitivity and estimation uncertainty on external factors, like LV cavity pressure, and sheds new light on cardio-mechanic model formulation, with particular focus on the Holzapfel-Ogden myocardial model.
更多
查看译文
关键词
Holzapfel-Ogden model,Global sensitivity analysis,Inverse-uncertainty quantification,Cardiac model,Gaussian process
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要