LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation

CoRR(2022)

引用 0|浏览46
暂无评分
摘要
In Federated Learning, it is crucial to handle low-quality, corrupted, or malicious data. However, traditional data valuation methods are not suitable due to privacy concerns. To address this, we propose a simple yet effective approach that utilizes a new influence approximation called "lazy influence" to filter and score data while preserving privacy. To do this, each participant uses their own data to estimate the influence of another participant's batch and sends a differentially private obfuscated score to the central coordinator. Our method has been shown to successfully filter out biased and corrupted data in various simulated and real-world settings, achieving a recall rate of over >90% (sometimes up to 100%) while maintaining strong differential privacy guarantees with ε≤ 1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要