Experiment on fluid regime under different rotate velocity in physical simulation of titanium vertical centrifugal casting

The International Journal of Advanced Manufacturing Technology(2022)

引用 0|浏览7
暂无评分
摘要
In this paper, the physical simulation of filling process of vertical centrifugal casting (VCC) of complex titanium alloy casting was studied. Combined with the mature PTV particle tracking technology, the high-speed photography pictures of the filling process of VCC at different rotational speeds were obtained. The trajectory and velocity information of tracer particles in the rotating flow field were obtained by the corresponding analysis software. Then, through the analysis and modeling of quantitative experimental data, the flow behavior characteristics and movement law of titanium alloy melt in the mold cavity under different mold speeds were studied. The results show that: 1. When the mold is still, the front edge of the filling fluid forms a curved surface with the curvature center pointing to the outside of the mold; when the mold rotates, the front edge of the liquid flow forms a curved surface with the curvature center pointing to the inside of the mold; 2. With the increase of the mold rotation speed, the speed of the fluid filling the mold increases significantly; when the rotational speed is greater than 120 rpm, the fluid still has a certain driving force in the mold center far away from the gate; it is good for filling the inner corner of mold with fluid; and 3. When the rotational speed of centrifugal casting of titanium alloy reaches 45 rpm or above, typical turbulent vortices appear in the wake; with the increase of rotating speed to 180 rpm, the average curvature radius of turbulent vortices first increases and then decreases, and reaches the minimum value of 0.67 cm at 120 rpm.
更多
查看译文
关键词
Centrifugal casting of titanium alloy,Physical simulation experiment,Particle tracer technology,Filling velocity,Morphology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要