A multi-variate heart disease optimization and recognition framework

Neural Computing and Applications(2022)

引用 7|浏览11
暂无评分
摘要
Cardiovascular diseases (CVD) are the most widely spread diseases all over the world among the common chronic diseases. CVD represents one of the main causes of morbidity and mortality. Therefore, it is vital to accurately detect the existence of heart diseases to help to save the patient life and prescribe a suitable treatment. The current evolution in artificial intelligence plays an important role in helping physicians diagnose different diseases. In the present work, a hybrid framework for the detection of heart diseases using medical voice records is suggested. A framework that consists of four layers, namely “Segmentation” Layer, “Features Extraction” Layer, “Learning and Optimization” Layer, and “Export and Statistics” Layer is proposed. In the first layer, a novel segmentation technique based on the segmentation of variable durations and directions (i.e., forward and backward) is suggested. Using the proposed technique, 11 datasets with 14,416 numerical features are generated. The second layer is responsible for feature extraction. Numerical and graphical features are extracted from the resulting datasets. In the third layer, numerical features are passed to 5 different Machine Learning (ML) algorithms, while graphical features are passed to 8 different Convolutional Neural Networks (CNN) with transfer learning to select the most suitable configurations. Grid Search and Aquila Optimizer (AO) are used to optimize the hyperparameters of ML and CNN configurations, respectively. In the last layer, the output of the proposed hybrid framework is validated using different performance metrics. The best-reported metrics are (1) 100% accuracy using ML algorithms including Extra Tree Classifier (ETC) and Random Forest Classifier (RFC) and (2) 99.17% accuracy using CNN.
更多
查看译文
关键词
Aquila optimizer (AO), Convolutional neural network (CNN), Deep learning (DL), Heart disease, Machine learning (ML), Metaheuristic optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要