Accuracy of Flowmeters Measuring Horizontal Flow in Fractured-Rock Simulators

GROUND WATER MONITORING AND REMEDIATION(2021)

引用 0|浏览0
暂无评分
摘要
Laboratory evaluations of flowmeter response to flow in fractured-rock simulators are needed to improve understanding of data collected in field settings. The ability of flowmeters to accurately measure the velocity and direction of water flowing between parallel plates was used as a surrogate for instrument response in fractured-rock aquifers. A colloidal borescope flowmeter and a heat-pulse flowmeter were deployed in a fractured rock simulator with 4-inch and 6-inch inner-diameter, uncased wells with 0.39- and 1.0-inch fracture apertures and groundwater velocities from 35 to 975 ft/d. The colloidal borescope measurements and applied velocities were positively correlated in all wells and apertures (the coefficient of determination [r(2)] = 0.61-0.89) and most accurately measured direction at higher velocities. The mean directional error in colloidal borescope measurements was less than 17 degrees in 6-inch wells and 31 degrees in the 4-inch wells at velocities between 92 and 958 ft/d. Heat-pulse flowmeter measurements were 0.001 to 0.004 times less than applied rates and may indicate that water was moving around rather than through the instrument's integrated packer. The mean directional error of heat-pulse flowmeter measurements were about 18 and 42 degrees in the 0.39- and 1.0-inch fractures, respectively, for groundwater velocities within the manufacturer's suggested range of application (0.5-100 ft/d). Measurements made at vertical increments and fracture positions in the well using the colloidal borescope indicate that laminar flow occurs within the central 50% of the fracture but measurements above or below are likely affected by eddy currents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要