Continuous CH4 and delta(CH4)-C-13 measurements in London demonstrate under-reported natural gas leakage

ATMOSPHERIC CHEMISTRY AND PHYSICS(2022)

引用 0|浏览7
暂无评分
摘要
Top-down greenhouse gas measurements can be used to independently assess the accuracy of bottomup emission estimates. We report atmospheric methane (CH4) mole fractions and delta(CH4)-C-13 measurements from Imperial College London from early 2018 onwards using a Picarro G2201-i analyser. Measurements from March 2018 to October 2020 were compared to simulations of CH4 mole fractions and ffi delta(CH4)-C-13 produced using the NAME (Numerical Atmospheric-dispersion Modelling Environment) dispersion model coupled with the UK National Atmospheric Emissions Inventory, UK NAEI, and a global inventory, the Emissions Database for Global Atmospheric Research (EDGAR), with model spatial resolutions of similar to 2, similar to 10, and similar to 25 km. Simulation-measurement comparisons are used to evaluate London emissions and the source apportionment in the global (EDGAR) and UK national (NAEI) emission inventories. Observed mole fractions were underestimated by 30 %-35% in the NAEI simulations. In contrast, a good correspondence between observations and EDGAR simulations was seen. There was no correlation between the measured and simulated delta(CH4)-C-13 values for either NAEI or EDGAR, however, suggesting the inventories' sectoral attributions are incorrect. On average, natural gas sources accounted for 20%-28% of the above background CH4 in the NAEI simulations and only 6%-9% in the EDGAR simulations. In contrast, nearly 84% of isotopic source values calculated by Keeling plot analysis (using measurement data from the afternoon) of individual pollution events were higher than -45 parts per thousand, suggesting the primary CH4 sources in London are actually natural gas leaks. The simulation-observation comparison of CH4 mole fractions suggests that total emissions in London are much higher than the NAEI estimate (0.04 TgCH(4) yr(-1)) but close to, or slightly lower than, the EDGAR estimate (0.10 TgCH(4) yr(-1)). However, the simulation-observation comparison of delta(CH4)-C-13 and the Keeling plot results indicate that emissions due to natural gas leaks in London are being underestimated in both the UK NAEI and EDGAR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要