Effect of substrate temperature on microstructure and mechanical properties of TiAl alloy fabricated using the twin-wire plasma arc additive manufacturing system

Journal of Materials Science(2022)

引用 6|浏览2
暂无评分
摘要
TiAl alloy becomes a promising high-temperature structural material due to excellent mechanical properties at elevated temperature. However, the inherent brittleness makes it difficult to be processed by traditional technologies. Therefore, an innovative twin-wire plasma arc additive manufacturing (TW-PAAM) process is developed to fabricate TiAl alloy. Substrate heating is indispensable during additively manufactured TiAl alloy, which can alleviate its crack tendency. In this paper, crack-free TiAl alloy samples are fabricated using TW-PAAM, and the effect of substrate temperature (560, 620 and 680 °C) on as-deposited TiAl alloy is investigated in detail. With the increase in substrate temperature, microstructural lamellar spacing and colony size exhibit the tendency of increase. Also, α 2 phase content, recrystallization degree and high Schmid factor frequency present the decrease tendency. These variations of microstructure characteristics further lead to the decrease in both microhardness and tensile properties of the deposit. These findings provide a valuable reference for optimizing microstructures and mechanical properties of additively manufactured TiAl alloys.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要