An interactive tri-level multi-energy management strategy for heterogeneous multi-microgrids

Journal of Cleaner Production(2021)

引用 10|浏览2
暂无评分
摘要
This paper proposes a multi-level multi-energy management framework for the coordinated and interactive operation of heterogeneous multi-microgrids (MMGs) based on many-criteria optimality. With the proposed framework, the highly nonlinear and complex MMG multi-energy management (MMGMEM) problem is formulated into tri-level scheduling subproblems with multi-energy couplings and multi-level interactions, in which the multi-energy trading with energy networks and multi-energy couplings within MGs are optimized in the upper and middle level, and a middle level is added to correct scheduling decisions of the upper level for coordinating the MMG multi-energy sharing. Then, a multi-step matrix decomposition technique is developed to decompose the high dimensional multi-energy coupling matrix of MMGs into the sum of three linear and sparse submatrices for improving the computation efficiency and scalability. Furthermore, a many-criteria decision making (MCDM) model is proposed for the multi-energy sharing problem to achieve an optimum tradeoff in which all microgrids (MGs) can benefit from electricity-gas exchanges, and an evolutionary many-objective optimization based on hyperplane transformation algorithm is used to solve the MCDM problem. Simulation results verify that the proposed framework can achieve a cost saving for each MG (over 19%), and validate its scalability in solving large-scale MMGMEM problems.
更多
查看译文
关键词
Multi-energy management,Multi-level scheduling,Many-criteria optimality,Renewable energy,Multi-microgrids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要