Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications

MATERIALS SCIENCE-POLAND(2021)

引用 4|浏览4
暂无评分
摘要
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted the particular interest of scientists from various disciplines since their obtaining to the present day. The physicochemical and pharmacokinetic properties of SPIONs-containing magnetic nanofluids, and their applicability in biomedicine, largely depend on the stability of the colloidal system, particle size, size distribution, net magnetic moment, phase composition, and type and properties of stabilizers. Also, in some cases, when using magnetic nanoparticles for biomedical purposes, it is necessary that the stabilizing ligands of nanoparticles should not significantly change the magnetic properties. From this point of view, the preparation of stable colloidal systems containing bare iron oxide nanoparticles (BIONs) in water at physiological pH attracts particular attention and becomes increasingly popular in scientific circles. This study is focused on the development of the synthesis of aqueous suspensions of SPIONs stabilized with various organic molecules (oleic acid [OA] and poly(ethylene glycol) monooleate - with molecular weights 460 and 860) using a modified controlled chemical coprecipitation reaction, as well as stable nanofluids containing BIONs in an aqueous medium at neutral pH (near-physiological). The obtained samples were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy, small-angle x-ray scattering (SAXS), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and Vibrating Sample Magnetometry.
更多
查看译文
关键词
SPIONs, bare iron oxide nanoparticles, Poly (ethylene glycol) monooleate, oleic acid, ferrofluids
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要