A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems

CATENA(2022)

引用 18|浏览14
暂无评分
摘要
Global warming has significantly affected the terrestrial C and N cycling processes. Whereas, it is unclear how global warming impacts the C and N concentrations in the above- and belowground ecosystems. We performed a meta-analysis with the results presented in 136 papers and 1886 observations. The data reveals that global warming increased C concentrations in leaf, shoot, and microbial biomass and N concentrations in the shoot. The C:N ratios of microbial biomass also increased under conditions of warming. However, the soil C concentration and soil C:N ratios decreased. Furthermore, these responses are more evident with longer warming duration and elevated warming magnitudes. The warming effects on C and N concentrations and C:N ratios never changed with warming methods, ecosystem types, or background climates. Also, in response to warming, soil moisture was negatively correlated with leaf C concentration as well as C:N ratio in microbial biomass. Soil pH response to warming was in a negative correlation with those of soil C concentration, soil C:N ratio, and microbial biomass C concentration. Our analysis has identified some key ecosystem processes that can be potentially implemented into the ecosystem models for predicting how warming affects future terrestrial C and N dynamics.
更多
查看译文
关键词
Global climate change, Elevated temperature, Ecological stoichiometry, Plant-soil-microorganism, Soil microbial biomass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要