A Meta-framework for Spatiotemporal Quantity Extraction from Text

PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS)(2022)

引用 9|浏览85
暂无评分
摘要
News events are often associated with quantities (e.g., the number of COVID-19 patients or the number of arrests in a protest), and it is often important to extract their type, time, and location from unstructured text in order to analyze these quantity events. This paper thus formulates the NLP problem of spatiotemporal quantity extraction, and proposes the first meta-framework for solving it. This meta-framework contains a formalism that decomposes the problem into several information extraction tasks, a shareable crowdsourcing pipeline, and transformer-based baseline models. We demonstrate the meta-framework in three domains-the COVID-19 pandemic, Black Lives Matter protests, and 2020 California wildfires-to show that the formalism is general and extensible, the crowdsourcing pipeline facilitates fast and high-quality data annotation, and the baseline system can handle spatiotemporal quantity extraction well enough to be practically useful. We release all resources for future research on this topic.(1)
更多
查看译文
关键词
spatiotemporal quantity extraction,text,meta-framework
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要