Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate

Journal of Hazardous Materials(2022)

引用 17|浏览3
暂无评分
摘要
Although sulfate radical-based advanced oxidation processes (SR-AOPs) have shown great potential for the efficient degradation of various organic contaminants, there is few research on the removal of organophosphorus pesticides (OPPs) through SR-AOPs. In this work, Co-doped Fe3O4 magnetic particles encapsulated by zirconium-based metal-organic frameworks (Co-Fe3O4@UiO-66) were prepared and employed to activate peroxymonosulfate (PMS) for the elimination of fenitrothion (FNT) and the simultaneous in-situ adsorption of produced phosphate. The catalyst exhibited efficient catalytic performance, achieving above 90.0% removal of FNT (10 mg/L) in the presence of PMS (1 mM) within 60 min. Moreover, the produced phosphate during the degradation process was also completely adsorbed onto the catalyst. Both sulfate and hydroxyl radicals were responsible for the degradation of FNT. The degradation products of FNT in the system were identified and the possible pathways were proposed. This study represents a promising and adoptable strategy to develop other versatile composite nanomaterials in a green manner hence broadening its environmental application range, as it can not only remove OPPs by catalytic oxidation but also immobilize degraded phosphorus by adsorption.
更多
查看译文
关键词
Metal-organic framework,Fenitrothion,Peroxymonosulfate,Adsorption,Catalytic degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要