Effect of Flux Rate Variation at Fixed V/III Ratio on Semi-Polar (112¯2) GaN: Crystal Quality and Surface Morphology Study

Crystals(2022)

引用 2|浏览0
暂无评分
摘要
We report on the crystal improvement of semi-polar (112¯2) gallium nitride epitaxy layer on m-plane (101¯0) sapphire substrate by changing the flux rate at a fixed V/III ratio. The high-resolution X-ray diffraction (HR-XRD) analysis showed that lower flux rate enhanced the crystal quality of GaN epitaxy with the lowest FWHM values of 394 and 1173 arc seconds at [11¯23] and [11¯00] planes, respectively. In addition, Raman spectroscopy showed that flux rate did not affect the stress state of the GaN crystal. However, atomic force microscopy (AFM) micrograph depicted an anomalous trend where the lowest flux rate produces roughest surface with RMS roughness of 40.41 nm. Further analysis of AFM results on the undulation period length along [11¯23] and [11¯00] directions is carried out. It shows that as the growth rate decreases, the average undulation period along [11¯23] and [11¯00] directions increases from 2.59 µm and 1.90 µm to 3.52 µm and 3.52 µm, respectively. The mechanism for the surface roughening at the lower flux rate is then explained by using the adatom surface diffusion relation L ~ Dτ.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要