Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts

ENVIRONMENTAL RESEARCH LETTERS(2022)

引用 5|浏览13
暂无评分
摘要
Protected areas are essential to conserving biodiversity, yet changing climatic conditions challenge their efficacy. For example, novel and disappearing climates within the protected area network indicate that extant species may not have suitable climate in protected areas in the future. Further, potential transboundary range shifts, those that involve movement from one country to another, are also challenging because physical (e.g. fencing) and non-physical barriers (e.g. contrasting conservation policies) may impede climate-induced movements. Through the lens of climate analogs, we examined disappearing and novel climates within the global terrestrial protected area network and the potential for transboundary range shifts among protected areas under global warming 2 degrees C above preindustrial levels. We found that globally, climates in 24% of protected lands will no longer be protected within a 500 km radius of their focal location (indicating disappearing climates within the protected area network), while 36% of protected lands will gain climates not previously protected (indicating novel climates within the protected area network). Further, we found that potential transboundary range shifts are widespread but variable; for example, 23% of protected climates in Europe and >50% of protected climates in Africa under climate change are located in a different country than the focal protected areas. As the global conservation community actively deliberates conservation frameworks (e.g. 30% by 2030), our study offers insights to reduce the prevalence of novel and disappearing climates within the global protected area network via strategic conservation actions and underscores the importance of setting and accommodating targets and strategies that transcend national boundaries.
更多
查看译文
关键词
biodiversity,climate change,disappearing climates,novel climates,protected areas,transboundary conservation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要