A Comparison of Statistically Equivalent and Realistic Microstructural Representative Volume Elements for Crystal Plasticity Models

Integrating Materials and Manufacturing Innovation(2022)

引用 5|浏览5
暂无评分
摘要
Two methods used to construct a microstructural representative volume element (RVE) were evaluated for their accuracy when used in a crystal plasticity-based finite element (CP-FE) model. The RVE-based CP-FE model has been shown to accurately predict the complete tensile stress–strain response of a Ti–6Al–4V alloy manufactured by laser powder bed fusion. Each method utilized a different image-based technique to create a three-dimensional (3D) RVE from electron backscatter diffraction (EBSD) images. The first method, referred to as the realistic RVE (R-RVE), reconstructed a physical 3D microstructure of the alloy from a series of parallel EBSD images obtained using serial-sectioning (or slicing). The second method captures key information from three orthogonal EBSD images to create a statistically equivalent microstructural RVE (SERVE). Based on the R-RVEs and SERVEs, the CP-FE model was then used to predict the complete tensile stress–strain response of the alloy, including the post-necking damage progression. The accuracy of the predicted stress–strain responses using the R-RVEs and SERVEs was assessed, including the effects of each microstructure descriptor. The results show that the R-RVE and the SERVE offer comparable accuracy for the CP-FE purposes of this study.
更多
查看译文
关键词
Crystal plasticity, Finite element modelling, Statistically equivalent representative volume element, 3D-EBSD, Titanium, Laser powder bed fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要