Transformation mechanisms of acetaldehyde and its substituted aldehydes into the corresponding nitriles and (N-chloro)amides during chloramination: A computational study

Science of The Total Environment(2022)

引用 2|浏览4
暂无评分
摘要
As an alternative disinfectant to free chlorine, monochloramine reduces the formation of regulated disinfection byproducts (DBPs); however, it also contributes to the formation of highly toxic nitrogenous DBPs (N-DBPs), especially through the aldehyde pathway. The current understanding of aldehyde pathway mechanisms is limited. In this study, the transformation pathways of acetaldehyde and its substituted aldehydes into the corresponding nitriles and (N-chloro)amides during chloramination were investigated using quantum chemical calculations. Consistent with previous studies, 1-chloroamino alcohol first forms in the chloramination of aldehydes and then undergoes competitive dehydration and HCl elimination branch reactions to generate the nitrile and (N-chloro)amide, respectively. Iminol was found to be a key intermediate for (N-chloro)amide formation. Moreover, the results indicated that acetaldehydes substituted with electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) are beneficial to the formation of the respective nitriles and N-chloro-amides, while those substituted with conjugated groups (CGs) are favourable for both. Based upon the above results, in addition to acetaldehyde, other aldehydes, such as propionaldehyde, glycolaldehyde, 3-butenal, and phenylacetaldehyde, which are the α-H of acetaldehydes substituted with –CH3, –OH, −CH=CH2, and −C6H5 groups, respectively, are potential precursors of toxic nitriles and (N-chloro)amides during chloramination. Thus, more attention should be given to these aldehydes. The findings of this work are helpful for further understanding the aldehyde pathway mechanisms and predicting potential precursors of toxic nitriles and (N-chloro)amides during chloramination.
更多
查看译文
关键词
Aldehyde pathway,Disinfection byproducts,Substituted effects,Quantum chemical calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要