Positron-emitting radiotracers spatially resolve unexpected biogeochemical relationships linked with methane oxidation in Arctic soils

GLOBAL CHANGE BIOLOGY(2022)

引用 0|浏览13
暂无评分
摘要
Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatiotemporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.
更多
查看译文
关键词
Arctic soils, carbon cycling, greenhouse gases, methane fluxes, methane oxidation, methanotrophy, nitrogen cycling, radioisotopes, soil biogeochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要