Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images.

European Conference on Computer Vision(2022)

引用 18|浏览34
暂无评分
摘要
In this paper, we present a generalizable model-free 6-DoF object pose estimator called Gen6D. Existing generalizable pose estimators either need the high-quality object models or require additional depth maps or object masks in test time, which significantly limits their application scope. In contrast, our pose estimator only requires some posed images of the unseen object and is able to accurately predict poses of the object in arbitrary environments. Gen6D consists of an object detector, a viewpoint selector and a pose refiner, all of which do not require the 3D object model and can generalize to unseen objects. Experiments show that Gen6D achieves state-of-the-art results on two model-free datasets: the MOPED dataset and a new GenMOP dataset. In addition, on the LINEMOD dataset, Gen6D achieves competitive results compared with instance-specific pose estimators. Project page: https://liuyuan-pal.github.io/Gen6D/.
更多
查看译文
关键词
6-Dof object pose estimation,Camera pose estimation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络