Improved Group Robustness via Classifier Retraining on Independent Splits

arxiv(2022)

引用 0|浏览0
暂无评分
摘要
Deep neural networks learned by minimizing the average risk can achieve strong average performance, but their performance for a subgroup may degrade, if the subgroup is underrepresented in the overall data population. Group distributionally robust optimization (Sagawa et al., 2020a, GDRO) is a standard baseline for learning models with strong worst-group performance. However, GDRO requires group labels for every example during training and can be prone to overfitting, often requiring careful model capacity control via regularization or early stopping. When only a limited amount of group labels is available, Just Train Twice (Liu et al., 2021, JTT) is a popular approach which infers a pseudo-group-label for every unlabeled example. The process of inferring pseudo labels can be highly sensitive during model selection. To alleviate overfitting for GDRO and the pseudo labeling process for JTT, we propose a new method via classifier retraining on independent splits (of the training data). We find that using a novel sample splitting procedure achieves robust worst-group performance in the fine-tuning step. When evaluated on benchmark image and text classification tasks, our approach consistently reduces the requirement of group labels and hyperparameter search during training. Experimental results confirm that our approach performs favorably compared with existing methods (including GDRO and JTT) when either group labels are available during training or are only available during validation.
更多
查看译文
关键词
spurious correlations,group shifts,overfitting,distributionally robust optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要